Dietary supplement mislabelling: case study on selected slimming products by developing a green isocratic HPLC method for their quality control

  • Bailey, R. L. Current regulatory guidelines and resources to support research of dietary supplements in the United States. Crit. Rev. Food Sci. Nutr. 60, 298–309 (2020).

    Article 

    Google Scholar
     

  • Pawar, R. S. & Grundel, E. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines ( PEAs ). Drug Test. Anal. 9, 500–517 (2017).

    Article 

    Google Scholar
     

  • Navarro, V. et al. The contents of herbal and dietary supplements implicated in liver injury in the United States are frequently mislabeled. Hepatol. Commun. 3, 792–794 (2019).

    Article 

    Google Scholar
     

  • Vincenzo, B., Riccio, F., Fonseca-santos, B., Colerato, P. & Chorilli, M. Characteristics, biological properties and analytical methods of trans -resveratrol : a review. Crit. Rev. Anal. Chem. 50, 339–358 (2020).

    Article 

    Google Scholar
     

  • Brizzi, A., Brizzi, V. & Corradini, D. Identification and quantification of trans – resveratrol in dietary supplements by a rapid and straightforward RP-HPLC method. J. Liq. Chromatogr. Relat. Technol. 31, 2089–2100 (2008).

    Article 

    Google Scholar
     

  • Jagwani, S., Jalalpure, S., Dhamecha, D. & Hua, G. S. A Stability indicating reversed phase HPLC method for estimation of trans -resveratrol in oral capsules and nanoliposomes. Anal. Chem. Lett. 9, 711–726 (2019).

    Article 

    Google Scholar
     

  • Moreton-Lamas, E., Lago-Crespo, M., Lage-Yusty, M. A. & Lopez-Hernandez, J. Comparison of methods for analysis of resveratrol in dietary vegetable supplements. Food Chem. 224, 219–223 (2017).

    Article 

    Google Scholar
     

  • Omar, J. M., Yang, H., Li, S., Marquardt, R. R. & Jones, P. J. H. Development of an improved reverse-phase high-performance liquid chromatography method for the simultaneous analyses of trans -/ cis -resveratrol, quercetin, and emodin in commercial resveratrol supplements. J. Agric. Food Chem. 62, 5812–5817 (2014).

    Article 

    Google Scholar
     

  • Solich, P., Fibigr, J. & Satínsk, D. A study of retention characteristics and quality control of nutraceuticals containing resveratrol and polydatin using fused-core column chromatography ˇ. J. Pharm. Biomed. Anal. 120, 112–119 (2016).

    Article 

    Google Scholar
     

  • Babu, S. K., Kumar, K. V. & Subbaraju, G. V. Estimation of trans-resveratrol in herbal extracts and dosage forms by high-performance thin-layer chromatography. Chem. Pharm. Bull. 53, 691–693 (2005).

    Article 

    Google Scholar
     

  • Orlandini, S., Giannini, I., Pinzauti, S. & Furlanetto, S. Multivariate optimisation and validation of a capillary electrophoresis method for the analysis of resveratrol in a nutraceutical. Talanta 74, 570–577 (2008).

    Article 

    Google Scholar
     

  • Gao, L., Chu, Q. & Ye, J. Determination of trans-resveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection. Food Chem. 78, 255–260 (2002).

    Article 

    Google Scholar
     

  • Zhang, H., Xu, L. & Zheng, J. Anodic voltammetric behavior of resveratrol and its electroanalytical determination in pharmaceutical dosage form and urine. Talanta 71, 19–24 (2007).

    Article 

    Google Scholar
     

  • Yardim, Y. Electrochemical determination of resveratrol in dietary supplements at a boron-doped diamond electrode in the presence of hexadecyltrimethylammonium bromide using square-wave adsorptive stripping voltammetry. J. Serbian Chem. Soc. 82, 175–188 (2017).

    Article 

    Google Scholar
     

  • Liu, J. X., Wu, Y. J., Wang, F., Gao, L. & Ye, B. X. Adsorptive voltammetric behaviors of resveratrol at graphite electrode and its determination in tablet dosage form. J. Chinese Chem. Soc. 55, 264–270 (2008).

    Article 

    Google Scholar
     

  • Klein, R. S. et al. Trans-resveratrol electrochemical detection using portable device based on unmodified screen-printed electrode. J. Pharm. Biomed. Anal. 207, 114399–114407 (2021).

    Article 

    Google Scholar
     

  • Rao, S. et al. Pharmacological exploration of phenolic compound : raspberry ketone-update 2020. Plants 10, 1323–1339 (2021).

    Article 

    Google Scholar
     

  • Lee, J. Further research on the biological activities and the safety of raspberry ketone is needed. NFS 2, 15–18 (2016).

    Article 

    Google Scholar
     

  • Hao, L. et al. Acute feeding suppression and toxicity of raspberry ketone [4-(4-hydroxyphenyl)-2-butanone] in mice. Food Chem. Toxicol. 143, 111512 (2020).

    Article 

    Google Scholar
     

  • Mir, T. M., Ma, G., Ali, Z., Khan, I. A. & Mohammad, K. Effect of raspberry ketone on normal, obese and health-compromised obese mice: A preliminary study. J. Diet. Suppl. 18, 1–16 (2021).

    Article 

    Google Scholar
     

  • Al-othman, Z. A., Al-warthan, A., Aboul-enein, H. Y., Za’abi, M., & Al Ali, I. Mechanistic approaches of PhE and PPF columns separation for rasberry ketone and caffeine. J. Liq. Chromatogr. Relat. Technol. 38, 1324–1332 (2015).

  • Maggi, F. et al. Analysis of food supplement with unusual raspberry ketone content. J. Food Process. Preserv. 41, 13–19 (2016).


    Google Scholar
     

  • Aboul-Enein, H. Y., Antochi, O. M., Nechifor, G. & Bunaciu, A. A. Analysis of raspberry ketone in nutraceutical formulation using Fourier transform infrared spectrophotometric method. Open Bioact. Compd. J. 7, 8–13 (2019).

    Article 

    Google Scholar
     

  • Higashi, Y. Simple HPLC-fluorescence determination of raspberry ketone in fragrance mist after pre-column derivatization with 4-Hydrazino – 7- nitro – 2, 1, 3 – benzoxadiazole. J. Anal. Sci. Methods Instrum. 6, 44–49 (2016).


    Google Scholar
     

  • Higashi, Y. Improved method for determination of raspberry ketone in fragrance mist by HPLC-fluorescence analysis after pre-column derivatization with ( N -chloroformylmethyl- N -methylamino ). J. Anal. Sci. Methods Instrum. 8, 17–24 (2018).


    Google Scholar
     

  • Abdelaal, S. H., El, N. F., Hassan, S. A. & El-kosasy, A. M. Quality control of dietary supplements : An economic green spectrofluorimetric assay of Raspberry ketone and its application to weight variation testing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 261, 120032–120038 (2021).

  • The World Anti-Doping Agency. The Prohibited Stimulants List. https://www.wada-ama.org/en/content/what-is-prohibited/prohibited-in-competition/stimulants.

  • Percy, D. W. et al. Determination of Citrus aurantium protoalkaloids using HPLC with acidic potassium permanganate chemiluminescence detection. Talanta 80, 2191–2195 (2010).

    Article 

    Google Scholar
     

  • Putzbach, K., Rimmer, C. A., Sharpless, K. E. & Sander, L. C. Determination of Bitter Orange alkaloids in dietary supplements standard reference materials by liquid chromatography with ultraviolet absorbance and fluorescence detection. J. Chromatogr. A 1156, 304–311 (2007).

    Article 

    Google Scholar
     

  • Roman, M. C., Betz, J. M. & Hildreth, J. Determination of synephrine in bitter orange raw materials, extracts, and dietary supplements by liquid chromatography with ultraviolet detection: Single-laboratory validation. J. AOAC Int. 90, 68–81 (2007).

    Article 

    Google Scholar
     

  • Evans, R. L. & Siitonen, P. H. Determination of caffeine and sympathomimetic alkaloids in weight loss supplements by high-performance liquid chromatography. J. Chromatogr. Sci. 46, 61–67 (2008).

    Article 

    Google Scholar
     

  • Lorenzo, C. D. et al. Development and validation of HPLC method to measure active amines in plant food supplements containing Citrus aurantium L. Food Control 46, 136–142 (2014).

    Article 

    Google Scholar
     

  • Yun, J., Kwon, K., Choi, J. & Jo, C. H. Monitoring of the amphetamine-like substances in dietary supplements by LC-PDA and LC–MS/MS. Food Sci. Biotechnol. 26, 1185–1190 (2017).

    Article 

    Google Scholar
     

  • Rodrigues, J. et al. Rapid screening method in the identification of 17 adulterants in dietary supplements. Chromatographia 84, 267–274 (2021).

    Article 

    Google Scholar
     

  • Yun, J., Choi, J., Jo, C. H. & Kwon, K. Detection of synthetic anti-obesity drugs, designer analogues and weight-loss ingredients as adulterants in slimming foods from 2015 to 2017. J. Chromatogr. Sep. Tech. 09, 1000396–1000401 (2018).


    Google Scholar
     

  • Viana, C. et al. Liquid chromatographic determination of caffeine and adrenergic stimulants in food supplements sold in brazilian e-commerce for weight loss and physical fitness. Food Addit. Contam. – Part A 33, 1–9 (2015).

    Article 

    Google Scholar
     

  • Viana, C. et al. High-performance liquid chromatographic analysis of biogenic amines in pharmaceutical products containing Citrus aurantium. Food Addit. Contam. – Part A 30, 634–642 (2013).

    Article 

    Google Scholar
     

  • Gatti, R. & Lotti, C. Development and validation of a pre-column reversed phase liquid chromatographic method with fluorescence detection for the determination of primary phenethylamines in dietary supplements and phytoextracts. J. Chromatogr. A 1218, 4468–4473 (2011).

    Article 

    Google Scholar
     

  • Pawar, R. S., Grundel, E., Fardin-kia, A. R. & Rader, J. I. Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC – MS / MS methods. J. Pharm. Biomed. Anal. 88, 457–466 (2014).

    Article 

    Google Scholar
     

  • Pawar, R. S., Sagi, S. & Leontyev, D. Analysis of bitter orange dietary supplements for natural and synthetic phenethylamines by LC-MS/MS. Drug Test. Anal. 12, 1241–1251 (2020).

    Article 

    Google Scholar
     

  • Hsien, A., Koh, W., Chess-williams, R. & Elizabeth, A. HPLC-UV-QDa analysis of Citrus aurantium- labelled pre-workout supplements suggest only a minority contain the plant extract. J. Pharm. Biomed. Anal. 193, 113746–113754 (2021).

    Article 

    Google Scholar
     

  • Marchei, E., Pichini, S., Pacifici, R., Pellegrini, M. & Zuccaro, P. A rapid and simple procedure for the determination of synephrine in dietary supplements by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 41, 1468–1472 (2006).

    Article 

    Google Scholar
     

  • Mercolini, L. et al. Fast CE analysis of adrenergic amines in different parts of Citrus aurantium fruit and dietary supplements. J. Sep. Sci. 33, 2520–2527 (2010).

    Article 

    Google Scholar
     

  • Allahverdiyeva, S., Keskin, E., Pinar, P. T., Yardim, Y. & Senturk, Z. First electroanalytical methodology for the determination of hordenine in dietary supplements using a boron-doped diamond electrode. Electroanalysis 31, 1–8 (2019).

    Article 

    Google Scholar
     

  • Haššo, M., Sarakhman, O., Stanković, D. M. & Švorc, L. A new voltammetric platform for reliable determination of the sport performance-enhancing stimulant synephrine in dietary supplements using a boron-doped diamond electrode. Anal. Methods 12, 4749–4758 (2020).

    Article 

    Google Scholar
     

  • Zhao, J., Wang, M., Avula, B. & Khan, I. A. Detection and quantitation of phenethylamines in sports dietary supplements by NMR approach. J. Pharm. Biomed. Anal. 151, 347–355 (2018).

    Article 

    Google Scholar
     

  • McCalley, D. V. Selection of suitable stationary phases and optimum conditions for their application in the separation of basic compounds by reversed-phase HPLC. J. Sep. Sci. 26, 187–200 (2003).

    Article 

    Google Scholar
     

  • Rebiere, H., Guinot, P., Civade, C., Bonnet, P. & Nicolas, A. Detection of hazardous weight-loss substances in adulterated slimming formulations using ultra-high- pressure liquid chromatography with diode-array detection. Food Addit. Contam. Part A 29, 161–171 (2012).

    Article 

    Google Scholar
     

  • Snyder, L. R., Kirkland, J. J. & Glajch, J. L. Appendix II: Properties of Solvents Used in HPLC. Practical HPLC Method Dev. 3, 721–728 (2012).

    Article 

    Google Scholar
     

  • Validation of Analytical Procedures: Text and Methodology Q2(R1), U. food and drug administration. International Conference on Harmonisation, Validation of Analytical Procedures: Text and Methodology Q2(R1), US food and drug administration. in (2005). https://doi.org/10.1590/s1984-82502011000100012.

  • FDA guidance for industry on Validation of Chromatographic Methods and USP General 200 Chapter <621> Chromatography. 258–265 (2012).

  • Karthikeyan, K., Arularasu, G. T., Ramadhas, R. & Pillai, C. K. Development and validation of indirect RP-HPLC method for enantiomeric purity determination of d-cycloserine drug substance. J. Pharm. Biomed. Anal. 54, 850–854 (2011).

    Article 

    Google Scholar
     

  • Biesterbos, J. W. H., Sijm, D. T. H. M., van Dam, R. & Mol, H. G. J. A health risk for consumers: The presence of adulterated food supplements in the Netherlands. Food Addit. Contam. – Part A 36, 1273–1288 (2019).

    Article 

    Google Scholar
     

  • Gałuszka, A., Migaszewski, Z. M., Konieczka, P. & Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 37, 61–72 (2012).

    Article 

    Google Scholar
     

  • Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green analytical procedure Index. Talanta 181, 204–209 (2018).

    Article 

    Google Scholar
     

  • Gamal, M., Naguib, I. A., Panda, D. S. & Abdallah, F. F. Comparative study of four greenness assessment tools for selection of greenest analytical method for assay of hyoscine: N -butyl bromide. Anal. Methods 13, 369–380 (2021).

    Article 

    Google Scholar
     

  • Płotka-Wasylka, J. & Wojnowski, W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 23, 8657–8665 (2021).

    Article 

    Google Scholar
     

  • Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE – analytical GREEnness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).

    Article 

    Google Scholar
     

  • Linda, L. Reviewer guidance – validation of chromatographic methods. CDER. Cent. Drug Eval. Res. 22, 1–30 (1998).


    Google Scholar